Independent coding across spatial scales in moving fractal images

نویسندگان

  • Nuala Brady
  • Peter J. Bex
  • R. Eric Fredericksen
چکیده

We compared observers' ability to discriminate the direction of apparent motion using images which varied in their spatial characteristic; white or flat spectrum noise, and 1/f noise which has an amplitude spectrum characteristic of natural scenes. The upper spatial limit for discrimination (dmax) was measured using a two-flash random dot kinematogram (RDK), which consisted either of a pair of bandpass filtered images or of a bandpass filtered image and its broadband counterpart. Six bandpass central frequencies were used, ranging from 0.25 to 5.66 cyc/deg. Subjects could perform the direction discrimination task for all six central frequencies in both the bandpass-bandpass and bandpass-broadband sequences for the 1/f images, and dmax values were found to be approximately equal in these two conditions at all spatial scales. However, for the white noise images, direction discrimination was not possible at the lowest central frequencies in the bandpass-broadband task. These data show that information from a wide range of spatial scales is equally salient to the human motion system in images whose amplitude spectra fall as 1/f. However, for white noise images, information at the higher spatial frequencies is more salient and dominates performance in the direction discrimination task. These results are consistent with a model in which spatial frequency filters in the input lines of motion detectors have octave constant spatial frequency bandwidths and equal peak sensitivity. In line with a number of recent studies, this suggests that the spatial properties of motion sensitive cells are matched to the statistical properties of natural scenes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video Compression for Very Low Bit-Rate Communications Using Fractal and Wavelet Techniques

In this paper, we propose a very low bit-rate video compression algorithm that is based on fractal coding in the wavelet domain. Fractal compression techniques utilise local selfsimilarities present in images, to form images of properly transformed parts of itself. The recent discovery of the link between fractal compression and wavelets, have improved the performance of fractal coders. The sel...

متن کامل

Wavelet and Fractal Transforms for Image Compression

The main idea behind all fractal coding algorithms is to exploit the similarities present within many natural images: one block of an image is represented by an affine transform of another larger block taken from the image itself [1, 2, 3]. The characteristic property of fractal coders is to exploit similarities between different scales. Wavelet transforms perform multiresolution decompositions...

متن کامل

Vector quantisation based image enhancement

We present a new algorithm for rescaling images inspired by fractal coding. It uses a statistical model of the relationship between detail at different scales of the image to interpolate detail at one octave above the highest spatial frequency in the original image. We compare it with Bspline and bilinear interpolation techniques and show that it yields a sharper looking rescaled image.

متن کامل

Comparison Density and Fractal Dimension of Drainage Networks in Different Scales and Precision Different (Case Study: Ilam Watersheds)

Every phenomena in the nature, despite the complexity of the subject, has certain rules and regulations. River pattern and behavior as one of the most complex natural phenomena to this is not an exception. Depending on geomorphologic, climatic, topographic and erosive conditions, the waterways exhibit different patterns and behaviors. One of the parameters which can be achieved using the comple...

متن کامل

توصیف فرکتالی تاج پوشش درختان و چگالی ظاهری خاک در جنگل‌های زاگرس (مطالعه موردی: منطقه حفاظت شده بیستون)

In Zagros forest ecosystem, spatial variability of soil and vegetation properties are controlled by series of physical and biological parameters including topographical and anthropogenic factors. Distribution patterns of these properties are greatly variable. In the current study, geostatistics and fractal theory were used to assess the spatial variability of tree canopy and soil bulk density i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1997